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A simple inequality is proved, from which a rigorous lower bound on the compressibility of a classical
system with purely repulsive or hard core interaction follows immediately.

In this note we prove the following simple ine-
quality: let p be a probability measure on the
positive integers. Let p,, = p,, /n! be the probabi-
lity of integer ». Suppose that the second mo-
ment of p exists and that for allz = 0:

(Pp,2/Ppi1) (Pys1/Py)-A, where A>-1. (a)

If some Py = 0, it is to be understood that P, =
=0 for all m = n. Then:

(n-n))%)_ 1
(n) “1+A° (1)
Equality in (1) is obtained:
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if A >0, forp”=(7\l_-_n)!(IT-A)N for n <N,

(N arbitrary integer > 1) and zero otherwise.

ifA=0, forPy = ae”® with @ real, a>0.

if -1<A <0, for P,=

& (-A)" (1+A)a a(a+l)...(@+n-1) with @ real, a >0.

Proof: From Schwarz' inequality:
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expanding the right hand side and using (a), one
gets (1). The cases of equality in (1) are obtained
easily.

As an application, consider a system of clas-

sical particles, enclosed in a box of volume V,
interacting through a 2 body potential @ ; the sys-
tem is described in the grand canonical forma-
lism. Let z be the fugacity, Z the grand partition
function, 7' the absolute temperature, and g =

= (kT)-1. This defines a probability p on the in-
tegers by:

P,=z12"f dxyq...dx, exp[-8 Z o(x; -xj)]. 3)
i<j

For purely repulsive potentials and for hard
core potentials, i.e. potentials such that (1):
@(x-y) =+ for |x -y | <a, (2): for any finite se-
quence of n+1 points xg,...,x, such that
] xi-xj| > a for all 7 and j,

n
E qa(xo -x;) © -B,
=1
where B is a real (positive) constant, one can
prove easily [1,2] under the additional assump-
tion

J (1-exp[-Bo, (1)]) dx < =, ®)
where ¢, (x) = max(¢(x), 0), that condition (a) is
satisfied, with:

A=zD=zePB Fii -exp[-B ¢4 (x)]) dx (4)

(For repulsive potentials, B=0and ¢_ = ¢.)
Therefore, for all positive z and 1

_1ldp _B ((n -(n))2) =B 1
X=par~p (n) " pl+zD

where P = InZ/V is the pressure, p =(n)/V the
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density, and x the compressibility. For repulsive
or hard core potentials satisfying a weak temper-
ing condition which is closely related to (b) and
slightly stronger, the thermodynamic limit exists
[3]. Inequality (5) still holds in the limit as a
Lipschitz condition on the pressure. This proves
directly in the grand canonical formalism the
continuity of the pressure as a function of the
density (proofs have already been given in the

canonical formalism under various assumptions
[1,2,4]) and gives a lower bound on the compres-
sibility.
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